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ABSTRACT 

Welding failures are mostly influenced by 

improper combination of the welding process 

factors such as; current, voltage, welding speed and 

gas flow rate. To improve the quality of welded 

joints, it is imperative that input parameters that 

affect the welding process be monitored and 

optimally determined. The target of this study is to 

optimize and predict the optimal combination of 

current, voltage and welding speed needed to 

minimize preheat temperature in order to eliminate 

crack formation and stabilize heat input in mild 

steel weldment using response surface 

methodology (RSM) and artificial neural network 

(ANN). 

The key input parameters considered in this work 

are welding current, welding voltage and welding 

speed while the response or measured parameter is 

preheat temperature (PT). Using the range and 

levels of the independent variables, statistical 

design of experiment (DOE) using central 

composite design (CCD) method was employed to 

randomize the input variables. Hundred (100) 

pieces of mild steel coupons measuring 60 x 40 x10 

were used for the experiments. The experiment was 

performed 20 times, using 5 specimens for each 

run. The plate samples were 60 mm long with a 

wall thickness of 10mm. The samples were cut 

longitudinally with a Single-V joint preparation. 

The tungsten inert gas welding equipment was used 

to weld the plates after the edges have been 

bevelled and machined. The welding process uses a 

shielding gas to protect the weld specimen from 

atmospheric interaction. For this study, 100% pure 

Argon gas was used. The weld samples were made 

from 10mm thickness of mild steel plate; the plate 

was cut to size with the power hacksaw. The edges 

grinded and surfaces polished with emery paper 

and the joints welded and thereafter, the response 

(preheat temperature) was measured and recorded. 

To optimize the welding process, numerical 

optimization based on response surface 

methodology was employed while the prediction of 

preheat temperature using input variables not 

captured by the design of experiment was done 

using artificial neural network.  

From the result, it was observed that; for a current 

of 190.00amp, voltage of 21.95volts and welding 

speed of 5.00mm/s the minimized preheat 

temperature was computed to be 150.677
0
C. In 

addition, the reliability plot of observed preheat 

temperature versus ANN predicted preheat 

temperature yielded a coefficient of determination 

(R
2
) value of 0.9978.   

 Keyword: Preheat temperature, Design of 

experiment, Central composite design, Response 

surface methodology and artificial neural network 

 

I. INTRODUCTION 
Welding failures are mostly influenced by 

improper combination of the welding process 

factors such as; current, voltage, welding speed and 

gas flow rate (Sreeraj et al., 2013). Choosing the 

most suitable combinations of input process 
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parameters in order to achieve the required 

optimum weld bead quality is one of the 

fundamental issues facing Engineers in the 

manufacturing sector presently (Sharma et al., 

2020, Srirangan and Paulraj, 2016). Since the 

quality and strength of a weld is characterized by 

the reduction and elimination of weld defects such 

as cracks, undercut, deformation and porosity, it is 

important to employ standard methods for the 

selection of input variables and also for the 

optimization and prediction of the response 

variables using the selected input variables that can 

influence the quality and strength of the welded 

material (Panagiotidou and Tagaras, 2007). 

Numerous supervised machine learning algorithm 

are available for achieving these task. Popular 

among them is response surface methodology 

(RSM), support vector machine (SVM), random 

forest algorithm and artificial neural network 

(ANN) (Ghosh et al., 2016). Response surface 

methodology is an advance statistical technique 

which involves the incorporation of the second 

order effects of non-linear relationships (Cerino-

Cordova et al., 2011). It is a popular optimization 

technique employed in most process industries to 

determine the best possible combination of 

variables needed to optimize a specific response 

while artificial neural network is a predictive 

technique that employs different training algorithm 

and neurons to learn on a particular task. Numerous 

literatures on the application of machine learning 

algorithm were reviewed in the course of this 

study. Notable among the literatures includes; 

Murugan and Gunaraj, 2018 who employed RSM 

to correlate the angular distortion in GMAW of 

structural steel plate (IS: 2062) to the process 

parameters, namely: time gap between successive 

passes and wire feed rate. The main and interaction 

effects of the process parameters were analyzed 

and presented. It was found that the number of 

passes had a strong effect on the response, 

therefore, to control the angular distortion in 

practice the number of passes has to be monitored 

carefully. Moreover, it was demonstrated that all 

the process parameters have a negative effect on 

the angular distortion.  

Kim et al., (2002) have used genetic 

algorithm (GA) and RSM to determine the optimal 

welding conditions in GMAW process, the base 

metal was mild steel with a thickness of 5.8 mm. 

First, the near-optimal conditions were determined 

through GA, and then the optimal conditions were 

determined over a relatively small region by using 

RSM. The desirability function approach was used 

to find the optimal conditions. They correlated the 

following parameters; wire-feed rate, welding 

voltage and welding speed to some responses, 

namely, bead width, Penetration and height. They 

concluded that by combining these two techniques, 

a good result for finding the optimal welding 

conditions can be obtained. 

Benyounis and Olabi (2008) have 

developed a mathematical model using RSM to 

relate the failure load to the laser welding 

parameters namely: laser power, welding speed and 

focal position. The effect of the process parameters 

on the failure load and the tensile-shear strength of 

the lap joint made of AIS13O4 with I mm thickness 

have been investigated. It was found that the main 

factor affecting the joint strength is the welding 

speed and the other two factors are slightly 

affecting the joint strength.  

Turan et al., (2014) have applied the ANN 

models to predict the mechanical properties of 

steels in various applications, namely: impact 

strength of quenched and tempered pressure vessel 

steel exposed to multiple post weld heat treatment 

cycles. In addition, the hardness of the simulated 

HAZ in pipeline and lap fitting steel after in-

service welding and the hot ductility and hot 

strength of various micro-alloyed steel over the 

temperature range for stand or slab straightening in 

continuous casting process were also predicted. It 

was found that the three ANN models successfully 

predicted the mechanical properties. It was also 

shown that ANNs could successfully predict 

multiple mechanical properties and the result of the 

sensitivity analysis were in agreement with both 

findings of the experimental investigation and 

reported results in the literature, Furthermore, it 

was mentioned that the use of ANNs resulted in 

large economic benefits for organizations through 

minimizing the need for expensive experimental 

investigation and/or inspection of steels used in 

various applications.  

 

II. RESEARCH METHODOLOGY 
The key input parameters considered in 

the study includes; welding current, welding 

voltage and welding speed while the response or 

measured variable is pre-heat temperature (CR). 

The range and level of the experimental variables 

used  for statistical design of experiment are 

presented in Table 1 
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Table 1: Range and Levels of independent variables 

Independent Variables Range and Levels of Input Variables 

Lower Range (-1) Upper Range (+1) 

Welding Current (Amp) X1 170 190 

Welding Voltage (Volt) X2 21 25 

Welding Speed (mm/s) X2 2 5 

 

Using the range and levels of the independent 

variables presented in Table 1, statistical design of 

experiment (DOE) using central composite design 

(CCD) method was done. The total number of 

experimental runs that can be generated using the 

CCD is defined as; 

N= 2
n 

+ no + 2n    

     

 (1)  

Where; 

 

N; is the number of experimental runs based on 

CCD design 

2
n
; is the number of factorial points 

n0; is the number of center points 

2n; is the number of axial points 

n; is the number of variables 

Using Equation 1, twenty (20) experimental runs 

were generated based on the central composite 

design method and presented in Table 2 

 

Table 2: Design of experiment (DOE) 

Std Run Type Current (A) Voltage (V) 

Welding Speed 

(mm/s) 

15 1 Center 180 23 3.5 

16 2 Center 180 23 3.5 

17 3 Center 180 23 3.5 

18 4 Center 180 23 3.5 

19 5 Center 180 23 3.5 

20 6 Center 180 23 3.5 

9 7 Axial 163.1820717 23 3.5 

10 8 Axial 196.8179283 23 3.5 

11 9 Axial 180 19.63641434 3.5 

12 10 Axial 180 26.36358566 3.5 

13 11 Axial 180 23 0.977310754 

14 12 Axial 180 23 6.022689246 

1 13 Fact 170 21 2 

2 14 Fact 190 21 2 

3 15 Fact 170 25 2 

4 16 Fact 190 25 2 

5 17 Fact 170 21 5 

6 18 Fact 190 21 5 

7 19 Fact 170 25 5 

8 20 Fact 190 25 5 

 

Applying the design of experiment 

presented in Table 2, 100 pieces of mild steel 

coupons measuring 60 x 40 x10 were used for the 

experiments. The experiment was performed 20 

times, using 5 specimens for each run. The plate 

samples were 60 mm long with a wall thickness of 

10mm. The samples were cut longitudinally with a 

Single-V joint preparation. 

The tungsten inert gas welding equipment 

was used to weld the plates after the edges have 

been bevelled and machined. The welding process 

uses a shielding gas to protect the weld specimen 

from atmospheric interaction. For this study, 100% 

pure Argon gas was used. The weld samples were 

made from 10mm thickness of mild steel plate; the 

plate was cut to size with the power hacksaw. The 

edges grinded and surfaces polished with emery 

paper and the joints welded and thereafter, the 

responses were measured and recorded. The 

measured response corresponding to the input 

variable is presented in Table 3 
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Table 3: Design of experiment (DOE) 

Run Type Current (A) Voltage (V) 

Welding Speed 

(mm/s) 

 

Preheat Temp. 

(
0
C) 

1 Center 180 23 3.5 162 

2 Center 180 23 3.5 160 

3 Center 180 23 3.5 159 

4 Center 180 23 3.5 158 

5 Center 180 23 3.5 162 

6 Center 180 23 3.5 161 

7 Axial 163.1820717 23 3.5 150 

8 Axial 196.8179283 23 3.5 182 

9 Axial 180 19.63641434 3.5 140 

10 Axial 180 26.36358566 3.5 170 

11 Axial 180 23 0.977310754 160 

12 Axial 180 23 6.022689246 150 

13 Fact 170 21 2 190 

14 Fact 190 21 2 180 

15 Fact 170 25 2 155 

16 Fact 190 25 2 180 

17 Fact 170 21 5 180 

18 Fact 190 21 5 195 

19 Fact 170 25 5 130 

20 Fact 190 25 5 145 

 

For analysis of design data, Design Expert 

Statistical Software, Version 7.01, was employed in 

order to obtain the effects, coefficients, standard 

deviations of coefficients, and other statistical 

parameters of the fitted models. The behaviour of 

the system which was used to evaluate the 

relationship between the response variables (Y1, 

Y2, Y3, Y4 and Y5) and the independent variables 

(X1, X2, and X3) was explained using the empirical 

second-order polynomial equation proposed by 

Nuran, (2007)  
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Where;  

X1, X2, X3… Xk = input variables  

Y, β0, βi, βii, and βij = the known parameters and ƹ = the random error. 

  

To predict the preheat temperature beyond the 

scope of experimentation; artificial neural network 

(ANN) was employed. The step by step 

methodology of applying neural network is 

discussed as follows; 

 

2.1 Generation of input data 

Input data employed in the training, 

validation and testing were obtained from series of 

batch experiments based on the central composite 

design of experiment under varied welding current, 

welding voltage and welding speed. A full factorial 

central composite design of an experiment with 6 

center points and 3 replicates resulted in a total of 

60 experimental runs was used as the input data. 

The data were randomly divided into three subsets 

to represent the training (60%), validation (25%) 

and testing (15%). The validation data were 

employed to assess the performance and the 

generalization potential of the trained network 

while the testing data were used to test the quality 

of the network. To avoid the problem of weight 

variation which can subsequently affect the 

efficiency of the training process, the input and 

output data were first normalized between 0.1 and 

1.0 using the normalization equation proposed by 

Sinan et al., 2011 presented in Equation 2.3 

min

max min

0.1i

x x
x

x x

-
= +

-
   

     

  (2.2) 
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Where; 

xi; is the normalized value of the input and output 

data 

xmin; and xmax are the minimum and maximum 

value of the input and output data  

x is the input and output data. 

 

2.2 Selection of training algorithm and hidden 

neurons  

Input and output data training resulting in 

the design of network architecture is of paramount 

importance in the application of neural network to 

data modelling and prediction. To obtain the 

optimal network architecture that possess the most 

accurate understanding of the input and output 

data, two factors were considered. First was the 

selection of the most accurate training algorithm 

and secondly, the number of hidden neurons. Based 

on this consideration, different training algorithm 

and hidden neurons were selected and tested to 

determine the best training algorithm and accurate 

number of hidden neurons that will produce the 

most accurate network architecture. Selectivity was 

based on (r
2
 and MSE). 

 

2.3 Network Training/Performance of MNN 

To train the network, 3 runs of 1000 

epochs, each were used. In addition, cross 

validation data representing about 15% of the total 

input data were introduced to monitor the progress 

of training and prevent the network from 

memorizing the input data instead of leaning which 

was a common problem associated with 

overtraining. The progress of the training was 

checked using the mean square error of regression 

(MSE) graph for training and cross validation 

 

2.4 Network Testing/Validation 

To test the efficiency of the trained network, 25% 

of the input data was introduced to the network. 

 

III. RESULTS AND DISCUSSION 
The target of the optimization model was 

to minimize preheat temperature by optimizing the 

input variables. Using the method of numerical 

optimization based on response surface 

methodology, a second order polynomial equation 

was generated using the quadratic model. To 

validate the suitability of the quadratic model in 

analyzing the experimental data, the sequential 

model sum of squares were calculated and 

presented in Table 4 

 

 

Table 4: Sequential model sum of square for preheat temperature (PT) 

 
 

The sequential model sum of squares table 

shows the accumulating improvement in the model 

fit as terms are added. Based on the calculated 

sequential model sum of square, the highest order 

polynomial where the additional terms are 

significant and the model is not aliased was 

selected as the best fit. From the results of Tables 

4, it was observed that the cubic polynomial was 

aliased hence cannot be employed to fit the final 

model. In addition, the quadratic and 2FI model 

with p-value <0.0001, F-value of 268.63, mean 
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square value of 872.77 and sum of square value of 

2618.30 were suggesed as the best fit. 

To test how well the quadratic model can 

explain the underlying variation associated with the 

experimental data, the lack of fit test was estimated 

for preheat temperature. Model with significant 

lack of fit cannot be employed for prediction. 

Results of the computed lack of fit for preheat 

temperature is presented in Table 5. 

 

Table 5: Lack of fit test for preheat temperature (PT) 

 
 

From the results of Tables 5, it was 

observed that the quadratic polynomial with p-

value of 0.3503, F-value of 1.44, mean square 

value of 3.83 and sum of square value of 19.16 had 

a non-significant lack of fit and was suggested for 

model analysis while the cubic polynomial with p-

value of 0.3945, F-value of 0.87, men square value 

of 2.31 and sum of square value of 2.31 had a 

significand lack of fit hence aliased to model 

analysis. The model summary statistics computed 

for preheat temperature based on the different 

model sources is presented in Table 6 

 

Table 6: Model summary statistics for preheat temperature (PT) 

 
 

With R-squared value of 0.9940, Adjusted 

R-squared value of 0.9886, predicted R-squared 

value of 0.9696 and the predicted error sum of 

square (PRESS) value of 165.38, the quadratic 

model was acclaimed the best fit model. Low 

standard deviation, R-Squared near one and 

relatively low PRESS is the optimum criteria for 

defining the best model source. Based on the 

results of Tables 6, the quadratic polynomial model 

was suggested 

In assessing the strength of the quadratic model 

towards minimizing preheat temperature (PT), one-

way analysis of variance (ANOVA) was generated 

for and presented in Table 7.  
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Table 7: ANOVA table for validating the model significance towards minimizing preheat  

temperature (PT) 

 
 

Analysis of variance (ANOVA) was 

needed to check whether or not the model is 

significant and also to evaluate the significant 

contributions of each individual variable, the 

combined and quadratic effects towards each 

response. From the result of Table 7, the Model F-

value of 184.76 implies the model is significant.  

There is only a 0.01% chance that a "Model F-

Value" this large could occur due to noise. Values 

of "Prob > F" less than 0.0500 indicate model terms 

are significant. In this case A, B, C, AC, BC, A2, 

B2, C2 are significant model terms. Values greater 

than 0.1000 indicate the model terms are not 

significant. The "Lack of Fit F-value" of 1.44 

implies the Lack of Fit is not significant relative to 

the pure error. There is a 35.03% chance that a 

"Lack of Fit F-value" this large could occur due to 

noise. Non-significant lack of fit is good as it 

indicates a model that is significant. 

To validate the adequacy of the quadratic model 

based on its ability to minimizing preheat 

temperature (PT), the goodness of fit statistics 

presented in Tables 8 was employed; 
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Table 8: GOF statistics for validating model significance towards minimizing PT 

 
 

From the result of Table 8, it was 

observed that the "Predicted R-Squared"  value of 

0.9696 is in reasonable agreement with the "Adj R-

Squared" value of 0.9886. Adequate precision 

measures the signal to noise ratio.  A ratio greater 

than 4 is desirable.  The computaed  ratio of 51.448 

as observed in Table 8 indicates an adequate signal.  

This model can be used to navigate the design 

space and adequately minimize preheat temperature 

(PT). Based on the goodness of Fit statistics, the 

optimized mathematical model which shows the 

relationship between current, voltage, welding 

speed and the preheat temperature was generated 

and presented as follows; 

 

PT = 1908.41615-6.47345X1-

119.91417X2+72.05994X3-0.012500X1X2-

0.68333X1X3 

+3.41667X2X3+0.027133X1
2
+2.44610X2

2
-

3.50812X3
2
 -------------------------------------------- 

(1) 

  

Using the optimal equations, the response 

variables; preheat temperature was predicted and a 

reliability plot of observed versus predicted values 

of preheat temperature was obtained and presented 

in Figure 2 

 

 

 
Figure 2: Reliability plot of observed versus predicted preheat temperature (PT) 
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The high coefficient of determination (R
2
 = 0.9940) as observed in Figure 2 was used to established the 

suitability of response surface methodology in minimizing preheat temperature (PT). Finally, numerical 

optimization was performed to ascertain the desirability of the overall model. The optimization objective was to 

minimize preheat temperature (PT). The relative importance was set at the optimum value of 5.0 and the lower 

and upper boundary conditions were set at 1.0 and 0.1 for minimization. Lower boundary of 1.0 constrains the 

optimization tool to minimize the response variable. The final solution of numerical optimization is presented in 

Table 9 

 

Table 9: Optimal solutions of numerical optimization 

 
 

From the results of Table 9, it was 

observed that a current of 190.00amp, voltage of 

21.95volts and welding speed of 5.00mm/s will 

produce a weld material with cooling rate (CR); of 

72.0727
0
C/s. The optimal solution was selected by 

design expert with a desirability value of 96.40%. 

To study the effects of combine input variables on 

cooling rate (CR), 3D surface plots was generated 

and presented in Figure 3 
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Figure 3: Effect of current and voltage on preheat temperature (PT) 

 

The 3D surface plots presented in Figures 

3 shows the relationship between the input 

variables (current and voltage) and the response 

variable (preheat temperature (PT)). It is a 3 

dimensional surface plot which was employed to 

give a clearer concept of the response surface. 

Although not as useful as the contour plot for 

establishing responses values and coordinates, the 

view can provide a clearer picture of the 

interactions between the input and the response 

variables. The convex nature of Figure 3 implies 

that the selected input variables (current and 

voltage) has a critical influence on the response 

(preheat temperature). In which case an increase in 

the input variables will result to a corresponding 

increase in the response variable.  

To apply ANN for the prediction of 

preheat temperature, two important factors were 

considered and they include; selection of the most 

accurate training algorithm and determination of 

the exact number of hidden neurons. Table 10 

shows the different training algorithm that were 

tested and their performance. 

 

Table 10: Selection of optimum training algorithm for ANN 

S/No Training Algorithm 

(Learning Rule) 

Training 

MSE 

Cross 

Validation MSE 

R-Square  

(r
2
) 

1 Gradient information 

(Step) 

0.05489 0.04905 0.74 

2 Gradient and weight 

change (Momentum) 

0.05339 0.08097 0.78 

3 Gradient and rate of 

change of gradient 

(Quick prop) 

0.06894 0.04467 0.68 

4 Adaptive step sizes for 

gradient plus momentum 

(Delta Bar Delta) 

0.07602 0.00335 0.82 

5 Second order method for 

gradient (Conjugate 

gradient) 

0.03367 0.06703 0.79 

6 Improved second order 

method for gradient 

(Levenberg Marquardt) 

0.00028* 0.00012* 0.98* 
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Based on the result of Table 10, improved 

second order method of gradient also known as 

Levenberg Marquardt Back Propagation training 

algorithm (LMBPTA) was selected as the best 

since it has the highest coefficient of determination 

(R
2
) and the lowest mean square error of regression 

(MSE). To determine the exact numbers of hidden 

neuron, different numbers of hidden neurons were 

tested to create a trained network using Levenberg 

Marquardt Back Propagation training algorithm. 

The number of hidden neuron corresponding to the 

lowest MSE and the highest R
2 

as presented in 

Table 11 was selected to design the network 

architecture. 

 

Table 11: Selection of optimum number of hidden neurons for ANN 

S/No Number of Hidden 

Neurons 

Training MSE Cross Validation 

MSE 

R-Square  

(R
2
) 

1 2 0.0345 0.00453 0.75 

2 3 0.0269 0.03367 0.67 

3 5 0.0306 0.04051 0.88 

4 8 0.0178 0.02241 0.71 

5 10 0.0009 0.00033 0.97 

 

Based on the results of Tables 10 and 11, 

Levenberg Marquardt Back Propagation training 

algorithm having 10 hidden neurons in the input 

layer and output layer was used to train a network 

of 3 input processing elements, namely; current, 

voltage and welding speed and one response 

variable (preheat temperature) 

The network training diagram generated for the 

prediction of preheats temperature (PT) using back 

propagation neural network is presented in Figure 

4. 

 

 
Figure 4: Performance curve of trained network for predicting preheat temperature 

 

From the performance plot of Figure 4, no 

evidence of over fitting was observed. In addition 

similar trend was observed in the behaviour of the 

training, validation and testing curve which is 

expected since the raw data were normalized before 

use. Lower mean square error is a fundamental 

criteria used to determine the training accuracy of a 

network. An error value of 2.1308e-05 at epoch 13 

is an evidence of a network with strong capacity to 

predict preheats temperature. 

The regression plot which shows the correlation 

between the input variables (current, voltage and 

welding speed) and the target variable preheat 

temperature (PT) coupled with the progress of 

training, validation and testing is presented in 

Figure 5 
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Figure 5: Regression plot showing the progress of training, validation and testing for minimizing preheat 

temperature (PT) 

 

Based on the computed values of the 

correlation coefficient (R) as observed in Figure 5, 

it was concluded that the network has been 

adequately trained and can be employed to predict 

preheat temperature (PT). To test the reliability of 

the trained network, the network was thereafter 

employed to predict its own value of preheat 

temperature (PT) using the same set of input 

parameters (current, voltage and welding speed) 

generated from the central composite design.  

Based on the observed and the predicted values, a 

regression plot of outputs was thereafter generated 

and presented in Figure 6 
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Figure 6: Regression plot of observed versus predicted preheat temperature 

 

Coefficient of determination (r
2
) values of 0.9978 

as observed in Figure 6 was employed to draw a 

conclusion that the the trained network can be used 

to predict preheat temperature (PT) beyond the 

scope of experimentation.  

 

IV. CONCLUSION 
In this study, optimization and prediction 

of preheat temperature using response surface 

methodoloy (RSM) and artificial neural network 

have been implemented successfully. The study 

will not only provide additional information to the 

already existing literatures and optimization and 

prediction of welding process, it will also form the 

bases for future research in related field of study. It 

is interesting to note that determining the optimum 

conditions for any welding process is completely 

beyond the scope of the traditional methods of 

experimentation hence, the need to optimize all the 

controlling variables collectively using statistical 

design of experiment (DOE) which allows a large 

number of factors to be screened simultaneously. In 

this study, response surface methodology (RSM) 

has been successfully applied to optimize selected 

welding variables, namely; current, voltage and 

welding speed in order to minimize the preheat 

temperature and eliminate crack formation. More 

also, Artificial Neural Network (ANN) is gradually 

gaining general acceptability as one of the most 

versatile predictive tool of the 21st century. Its 

application and usefulness especially in the process 

industry cannot be over emphasized. In this study, 

the network has successfully been utilized to 

predict weld variables effectively. 
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