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ABSTRACT

Welding failures are mostly influenced by
improper combination of the welding process
factors such as; current, voltage, welding speed and
gas flow rate. To improve the quality of welded
joints, it is imperative that input parameters that
affect the welding process be monitored and
optimally determined. The target of this study is to
optimize and predict the optimal combination of
current, voltage and welding speed needed to
minimize preheat temperature in order to eliminate
crack formation and stabilize heat input in mild
steel  weldment using  response  surface
methodology (RSM) and artificial neural network
(ANN).

The key input parameters considered in this work
are welding current, welding voltage and welding
speed while the response or measured parameter is
preheat temperature (PT). Using the range and
levels of the independent variables, statistical
design of experiment (DOE) using central
composite design (CCD) method was employed to
randomize the input variables. Hundred (100)
pieces of mild steel coupons measuring 60 x 40 x10
were used for the experiments. The experiment was
performed 20 times, using 5 specimens for each
run. The plate samples were 60 mm long with a
wall thickness of 10mm. The samples were cut
longitudinally with a Single-V joint preparation.
The tungsten inert gas welding equipment was used
to weld the plates after the edges have been
bevelled and machined. The welding process uses a

shielding gas to protect the weld specimen from
atmospheric interaction. For this study, 100% pure
Argon gas was used. The weld samples were made
from 10mm thickness of mild steel plate; the plate
was cut to size with the power hacksaw. The edges
grinded and surfaces polished with emery paper
and the joints welded and thereafter, the response
(preheat temperature) was measured and recorded.
To optimize the welding process, numerical
optimization based on response  surface
methodology was employed while the prediction of
preheat temperature using input variables not
captured by the design of experiment was done
using artificial neural network.

From the result, it was observed that; for a current
of 190.00amp, voltage of 21.95volts and welding
speed of 5.00mm/s the minimized preheat
temperature was computed to be 150.677°C. In
addition, the reliability plot of observed preheat
temperature  versus ANN predicted preheat
temperature yielded a coefficient of determination
(R?) value of 0.9978.

Keyword: Preheat temperature, Design of
experiment, Central composite design, Response
surface methodology and artificial neural network

l. INTRODUCTION
Welding failures are mostly influenced by
improper combination of the welding process
factors such as; current, voltage, welding speed and
gas flow rate (Sreeraj et al., 2013). Choosing the
most suitable combinations of input process
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parameters in order to achieve the required
optimum weld bead quality is one of the
fundamental issues facing Engineers in the
manufacturing sector presently (Sharma et al.,
2020, Srirangan and Paulraj, 2016). Since the
quality and strength of a weld is characterized by
the reduction and elimination of weld defects such
as cracks, undercut, deformation and porosity, it is
important to employ standard methods for the
selection of input variables and also for the
optimization and prediction of the response
variables using the selected input variables that can
influence the quality and strength of the welded
material (Panagiotidou and Tagaras, 2007).
Numerous supervised machine learning algorithm
are available for achieving these task. Popular
among them is response surface methodology
(RSM), support vector machine (SVM), random
forest algorithm and artificial neural network
(ANN) (Ghosh et al., 2016). Response surface
methodology is an advance statistical technique
which involves the incorporation of the second
order effects of non-linear relationships (Cerino-
Cordova et al., 2011). It is a popular optimization
technique employed in most process industries to
determine the best possible combination of
variables needed to optimize a specific response
while artificial neural network is a predictive
technique that employs different training algorithm
and neurons to learn on a particular task. Numerous
literatures on the application of machine learning
algorithm were reviewed in the course of this
study. Notable among the literatures includes;
Murugan and Gunaraj, 2018 who employed RSM
to correlate the angular distortion in GMAW of
structural steel plate (IS: 2062) to the process
parameters, namely: time gap between successive
passes and wire feed rate. The main and interaction
effects of the process parameters were analyzed
and presented. It was found that the number of
passes had a strong effect on the response,
therefore, to control the angular distortion in
practice the number of passes has to be monitored
carefully. Moreover, it was demonstrated that all
the process parameters have a negative effect on
the angular distortion.

Kim et al., (2002) have used genetic
algorithm (GA) and RSM to determine the optimal
welding conditions in GMAW process, the base
metal was mild steel with a thickness of 5.8 mm.
First, the near-optimal conditions were determined
through GA, and then the optimal conditions were
determined over a relatively small region by using

RSM. The desirability function approach was used
to find the optimal conditions. They correlated the
following parameters; wire-feed rate, welding
voltage and welding speed to some responses,
namely, bead width, Penetration and height. They
concluded that by combining these two techniques,
a good result for finding the optimal welding
conditions can be obtained.

Benyounis and Olabi (2008) have
developed a mathematical model using RSM to
relate the failure load to the laser welding
parameters namely: laser power, welding speed and
focal position. The effect of the process parameters
on the failure load and the tensile-shear strength of
the lap joint made of AlIS1304 with | mm thickness
have been investigated. It was found that the main
factor affecting the joint strength is the welding
speed and the other two factors are slightly
affecting the joint strength.

Turan et al., (2014) have applied the ANN
models to predict the mechanical properties of
steels in various applications, namely: impact
strength of quenched and tempered pressure vessel
steel exposed to multiple post weld heat treatment
cycles. In addition, the hardness of the simulated
HAZ in pipeline and lap fitting steel after in-
service welding and the hot ductility and hot
strength of various micro-alloyed steel over the
temperature range for stand or slab straightening in
continuous casting process were also predicted. It
was found that the three ANN models successfully
predicted the mechanical properties. It was also
shown that ANNs could successfully predict
multiple mechanical properties and the result of the
sensitivity analysis were in agreement with both
findings of the experimental investigation and
reported results in the literature, Furthermore, it
was mentioned that the use of ANNs resulted in
large economic benefits for organizations through
minimizing the need for expensive experimental
investigation and/or inspection of steels used in
various applications.

1. RESEARCH METHODOLOGY

The key input parameters considered in
the study includes; welding current, welding
voltage and welding speed while the response or
measured variable is pre-heat temperature (CR).
The range and level of the experimental variables
used for statistical design of experiment are
presented in Table 1
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Table 1: Range and Levels of independent variables

Independent Variables Range and Levels of Input Variables
Lower Range (-1) Upper Range (+1)
Welding Current (Amp) X, 170 190
Welding Voltage (Volt) X, 21 25
Welding Speed (mm/s) X, 2 5

Using the range and levels of the independent
variables presented in Table 1, statistical design of
experiment (DOE) using central composite design
(CCD) method was done. The total number of
experimental runs that can be generated using the

CCD is defined as;
N=2"+n, + 2n

N; is the number of experimental runs based on
CCD design

2" is the number of factorial points

Nno; is the number of center points

2n; is the number of axial points

n; is the number of variables

Using Equation 1, twenty (20) experimental runs

1) were generated based on the central composite
Where; design method and presented in Table 2
Table 2: Design of experiment (DOE)
Welding  Speed
Std Run | Type Current (A) Voltage (V) (mm/s)
15 1 Center 180 23 3.5
16 2 Center 180 23 3.5
17 3 Center 180 23 3.5
18 4 Center 180 23 3.5
19 5 Center 180 23 35
20 6 Center 180 23 3.5
9 7 Axial 163.1820717 23 3.5
10 8 Axial 196.8179283 23 3.5
11 9 Axial 180 19.63641434 35
12 10 Axial 180 26.36358566 3.5
13 11 Axial 180 23 0.977310754
14 12 Axial 180 23 6.022689246
1 13 Fact 170 21 2
2 14 Fact 190 21 2
3 15 Fact 170 25 2
4 16 Fact 190 25 2
5 17 Fact 170 21 5
6 18 Fact 190 21 5
7 19 Fact 170 25 5
8 20 Fact 190 25 5

Applying the design of experiment

presented in Table 2, 100 pieces of mild steel
coupons measuring 60 x 40 x10 were used for the
experiments. The experiment was performed 20
times, using 5 specimens for each run. The plate
samples were 60 mm long with a wall thickness of
10mm. The samples were cut longitudinally with a
Single-V joint preparation.

The tungsten inert gas welding equipment
was used to weld the plates after the edges have
been bevelled and machined. The welding process

uses a shielding gas to protect the weld specimen
from atmospheric interaction. For this study, 100%
pure Argon gas was used. The weld samples were
made from 10mm thickness of mild steel plate; the
plate was cut to size with the power hacksaw. The
edges grinded and surfaces polished with emery
paper and the joints welded and thereafter, the
responses were measured and recorded. The
measured response corresponding to the input
variable is presented in Table 3
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Table 3: Design of experiment (DOE)
Welding  Speed | Preheat Temp.
Run | Type Current (A) Voltage (V) (mm/s) ‘c)
1 Center 180 23 3.5 162
2 Center 180 23 3.5 160
3 Center 180 23 3.5 159
4 Center 180 23 3.5 158
5 Center 180 23 3.5 162
6 Center 180 23 35 161
7 Axial 163.1820717 23 3.5 150
8 Axial 196.8179283 23 3.5 182
9 Axial 180 19.63641434 3.5 140
10 Axial 180 26.36358566 3.5 170
11 Axial 180 23 0.977310754 160
12 Axial 180 23 6.022689246 150
13 Fact 170 21 2 190
14 Fact 190 21 2 180
15 Fact 170 25 2 155
16 Fact 190 25 2 180
17 Fact 170 21 5 180
18 Fact 190 21 5 195
19 Fact 170 25 5 130
20 Fact 190 25 5 145

For analysis of design data, Design Expert
Statistical Software, Version 7.01, was employed in
order to obtain the effects, coefficients, standard
deviations of coefficients, and other statistical
parameters of the fitted models. The behaviour of
the system which was used to evaluate the

Y =4 +Zq:ﬁixi +Zq:ﬁiixi2 + E Zq:ﬂijxixj +é&

i=li<j j=2
Where;
X1, X2, X3... X = input variables

relationship between the response variables (Y3,
Y2, Y3, Y4 and Ys) and the independent variables
(X1, X,, and X3) was explained using the empirical
second-order polynomial equation proposed by
Nuran, (2007)

)

Y, Bo, Bi, Bii, and Bjj = the known parameters and g = the random error.

To predict the preheat temperature beyond the
scope of experimentation; artificial neural network
(ANN) was employed. The step by step
methodology of applying neural network is
discussed as follows;

2.1 Generation of input data

Input data employed in the training,
validation and testing were obtained from series of
batch experiments based on the central composite
design of experiment under varied welding current,
welding voltage and welding speed. A full factorial
central composite design of an experiment with 6
center points and 3 replicates resulted in a total of
60 experimental runs was used as the input data.
The data were randomly divided into three subsets

to represent the training (60%), validation (25%)
and testing (15%). The validation data were
employed to assess the performance and the
generalization potential of the trained network
while the testing data were used to test the quality
of the network. To avoid the problem of weight
variation which can subsequently affect the
efficiency of the training process, the input and
output data were first normalized between 0.1 and
1.0 using the normalization equation proposed by
Sinan et al., 2011 presented in Equation 2.3

X= Xin +0.1
X

.=
max = Xmin

2.2)
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Where;

Xi; is the normalized value of the input and output
data

Xmin; and Xmax are the minimum and maximum
value of the input and output data

X is the input and output data.

2.2 Selection of training algorithm and hidden
neurons

Input and output data training resulting in
the design of network architecture is of paramount
importance in the application of neural network to
data modelling and prediction. To obtain the
optimal network architecture that possess the most
accurate understanding of the input and output
data, two factors were considered. First was the
selection of the most accurate training algorithm
and secondly, the number of hidden neurons. Based
on this consideration, different training algorithm
and hidden neurons were selected and tested to
determine the best training algorithm and accurate
number of hidden neurons that will produce the
most accurate network architecture. Selectivity was
based on (r* and MSE).

2.3 Network Training/Performance of MNN

To train the network, 3 runs of 1000
epochs, each were used. In addition, cross
validation data representing about 15% of the total
input data were introduced to monitor the progress
of training and prevent the network from
memorizing the input data instead of leaning which
was a common problem associated with
overtraining. The progress of the training was
checked using the mean square error of regression
(MSE) graph for training and cross validation

2.4 Network Testing/Validation
To test the efficiency of the trained network, 25%
of the input data was introduced to the network.
1. RESULTS AND DISCUSSION
The target of the optimization model was
to minimize preheat temperature by optimizing the
input variables. Using the method of numerical
optimization based on response surface
methodology, a second order polynomial equation
was generated using the quadratic model. To
validate the suitability of the quadratic model in
analyzing the experimental data, the sequential
model sum of squares were calculated and
presented in Table 4

Table 4: Sequential model sum of square for preheat temperature (PT)

D |G| |G| 6| & 2|
] Notes for PUNDI A ol p | \ | v -
| Transform | == Fit Summar X, Model - ANOVA |, <« Diagnostios Model Graphs
| 711 Design (Actual) y B L Y 1) é" b 3 | | S
| | -
| [+ Summary | J J | | l
| |
[ I 2| @raph Columns 5 PT Transformi None
[ 723 Evalustion | =+ WARNING: The Cubic Model is Aliased! =
l ) Analysis
| ]
g BHN (Analyzed
: ; 1 ‘ § byzad) Sequentisl Model Sum of Squares [Type |)
|l ) HIAnalyzed)
| [ Sum of Mean F p-value
|| 4 Hiw (Anatyzed) — X
: : 1 | CR (Analyzed) = Source Squares df Square Value Prob » F
| + +
Ik ﬂ?\ PT (Analyzed) Mean va Total 5.343E+005 1 5.343E+005
| ;
I hd Optimization Linsar vs Mean 1102 66 3 367.58 1.38 0.2014
! " Numerical __| 2FlvaLinear 1681.50 k] 580.50 275 0.0852
E' E‘] Graphical Q. g ve 2F 2018 30 3 B2t 26863 < 0.0001 Suggested
b 1| Point Prediction __|cubic va Quadra 16.84 4 421 1,81 0.2853 Alinned
Residual 15.65 6 261
pre Total 5 398E+005 20 26987 65
‘Sequential Mode! Sum of Squares [Type I]* Selact the highest order polynomial where the
additional tarms are significant and the model Is not allased

The sequential model sum of squares table
shows the accumulating improvement in the model
fit as terms are added. Based on the calculated
sequential model sum of square, the highest order
polynomial where the additional terms are
significant and the model is not aliased was

selected as the best fit. From the results of Tables
4, it was observed that the cubic polynomial was
aliased hence cannot be employed to fit the final
model. In addition, the quadratic and 2FI model
with p-value <0.0001, F-value of 268.63, mean
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square value of 872.77 and sum of square value of
2618.30 were suggesed as the best fit.

To test how well the quadratic model can
explain the underlying variation associated with the
experimental data, the lack of fit test was estimated

for preheat temperature. Model with significant
lack of fit cannot be employed for prediction.
Results of the computed lack of fit for preheat
temperature is presented in Table 5.

Table 5: Lack of fit test for preheat temperature (PT)

D] (e[| &) 2%
|l Notes for PUNDI e o -
| y)‘ Transtorm | 2= Fit Summary (%)  Model JI.\ ANOVA I [y Dlagnoauoal | |Modelc«rmaha
: | Dewign (Actunl) > .
| ©
| (i1 iy I I | I | I |
I .|| Graph Columns
| p—
: I %] Evaluation
L Wi =
(L Anshya __|Lack of Fit Tests
||« I BHN tanalyzed)
|| Sum of Mean F pevalue
[ 1+ 4] Hi(Analyzed) —
|| Source Squares df Square Value Prob > F
|4 Wiw (analyzed) [~
: : 1 | CR (Analyzed) - Linear 4310.96 " 362,63 147.24 < 0.0001
| | a
: \ IIPI PT (Analyzed) = 2F| 2637 46 8 32068 12363 «<0.0001
I Ad Optimization = Quadratic 1916 -} 282 144 02500 Suqaested
[:3¥] Numericat Cuble 23 1 23 0.87 0,3945 Alinsed
[ —
{14 Graphical | PureEror 13,23 5 267
.. ¥ Point Prediction
__| "Lack of Fit Testa™ Want the selected model to have insignificant lack-of-fit

From the results of Tables 5, it was
observed that the quadratic polynomial with p-
value of 0.3503, F-value of 1.44, mean square
value of 3.83 and sum of square value of 19.16 had
a non-significant lack of fit and was suggested for
model analysis while the cubic polynomial with p-

value of 0.3945, F-value of 0.87, men square value
of 2.31 and sum of square value of 2.31 had a
significand lack of fit hence aliased to model
analysis. The model summary statistics computed
for preheat temperature based on the different
model sources is presented in Table 6

Table 6: Model summary statistics for preheat temperature (PT)

Model Summary Statistics

and the "Predicted R-Squared™.

. Std. Adjusted
] Source Dev. R-Squared R-Squared
| Linear 16.48 0.2029 0.0534
| 2ZFI 14.28 0.5123 0.2872
] Quadratic 1.80 0.9940 0.9888

Cubic 161 0.9571 0.9509

"Mode! Summary Statistics™ Focus on the model maximizing the "Adjusted R-Squared”

Predicted
R-Squared PRESS
-0.4545 790732
0.0882 4955.44
0.9508 165.38 Suggested
0.8027 528.79 Aliased

With R-squared value of 0.9940, Adjusted
R-squared value of 0.9886, predicted R-squared
value of 0.9696 and the predicted error sum of
square (PRESS) value of 165.38, the quadratic
model was acclaimed the best fit model. Low
standard deviation, R-Squared near one and
relatively low PRESS is the optimum criteria for

defining the best model source. Based on the
results of Tables 6, the quadratic polynomial model
was suggested

In assessing the strength of the quadratic model
towards minimizing preheat temperature (PT), one-
way analysis of variance (ANOVA) was generated
for and presented in Table 7.
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Table 7: ANOVA table for validating the model significance towards minimizing preheat
temperature (PT)

File Edit View Display Opticns Design Tools Help
D[] (%)@ 529
Ié;m;se:glp(i“;:al} YL Transform EE Fit Summary | f(x) Madel ’m E Diagnostics DMndeI Graphz
-] sunmary | | | | | |
- 1] Graph Columns (YOI IETR ORI ¢ click on individual cells for definfiions.
- %] Evaluation Response 5
- 8] f\narysis ANOVA for Response Surface Quadratic Model
'u BHN (Analyzed) Analysis of variance table [Partial sum of squares - Type [ll]
. |7 H(Analyzed) —
_“ HIW (Anayzed) | — Sum of Mean F p-value
_“ CR (Analyzed) ] Source Squares df Square Value Prob>F
PT (Analyzed) _Mudel 540245 5 600.27 184.76 < 0.001 significant
. AJ Optimization | |-Current 517.22 1 517.22 159.20 <0.0001
-1 Numerical | B-Voltage 25272 1 25272 8010 = 0.000
ﬁ Graphical ] C-Welding spesd 29272 1 29272 80.10 = 0.0001
- ¥ point Predicion |48 0.50 1 0.50 0.15 0.7031
_AC 840.50 1 840.50 258.70 = 0.0001
] BC 840 50 1 840 50 258.70 = 0.0001
] A 106.10 1 106.10 3268 0.0002
] B 1379.66 1 1379.66 424 65 = 0.0001
] c? £97.68 1 £97.68 276.36 = 0.0001
__|Residual 3243 10 325
| Lack of Fit 19.16 5 383 144 0.3503 not significant
| Fure Error 13.33 5 267
] Cor Total 543495 19

Analysis of variance (ANOVA) was
needed to check whether or not the model is
significant and also to evaluate the significant
contributions of each individual variable, the
combined and quadratic effects towards each
response. From the result of Table 7, the Model F-
value of 184.76 implies the model is significant.
There is only a 0.01% chance that a "Model F-
Value™ this large could occur due to noise. Values
of "Prob > F" less than 0.0500 indicate model terms

are significant. In this case A, B, C, AC, BC, A2,
B2, C2 are significant model terms. Values greater
than 0.1000 indicate the model terms are not
significant. The "Lack of Fit F-value" of 1.44
implies the Lack of Fit is not significant relative to
the pure error. There is a 35.03% chance that a

"Lack of Fit F-value" this large could occur due to
noise. Non-significant lack of fit is good as it
indicates a model that is significant.

To validate the adequacy of the quadratic model
based on its ability to minimizing preheat
temperature (PT), the goodness of fit statistics
presented in Tables 8 was employed,;
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Table 8: GOF statistics for validating model significance towards minimizing PT

File Edit View Display Options Design Tools Help

D|c|u &[5l 8]2[9

(1 Notes for PUNDI
. 177 Design (Actual)

Y:\ Transform | == Fit Summary

f(x) wadel [L% snova [, Disgnastics
| | | |

E Model Graphs
|

] HI(Analyzed)
HIWY (Analyzed)  |—
. ] CR (Analyzed)
R pTianayzeqy |
ﬂ Optimization
- 1¥] Numerical
)_:a Graphical

- ] Summary | |
. |] Graph Coumns 5td. Dev. 1.80 R-Squared 0.8840
- ] Evaluation Mean 163.45 Adj R-Squared 0.9825
E| Analysis CV. % 110 Pred R-Squared 0.96%6
) BHN (Analyzed) [ B
| PRESS 165.38 Adeq Precision 51443

The "Pred R-Sguared” of 0.2698 is in reasonable agreement with the "Adj R-Squared” of 0.9886.

"Adeq Precizion” meazures the signal to noize ratio. A ratio greater than 4 is desirable. Your

ratio of 51.448 indicates an adeguate zignal. Thiz model can be uzed to navigate the design space.

From the result of Table 8, it was
observed that the "Predicted R-Squared” value of
0.9696 is in reasonable agreement with the "Adj R-
Squared" value of 0.9886. Adequate precision
measures the signal to noise ratio. A ratio greater
than 4 is desirable. The computaed ratio of 51.448
as observed in Table 8 indicates an adequate signal.
This model can be used to navigate the design
space and adequately minimize preheat temperature
(PT). Based on the goodness of Fit statistics, the
optimized mathematical model which shows the
relationship between current, voltage, welding
speed and the preheat temperature was generated
and presented as follows;

PT = 1908.41615-6.47345X -
119.91417X,+72.05994X5-0.012500X, X-
0.68333X1X3
+3.41667X,X3+0.027133X,%+2.44610X,°-
3.50812X5°

M)

Using the optimal equations, the response
variables; preheat temperature was predicted and a
reliability plot of observed versus predicted values
of preheat temperature was obtained and presented
in Figure 2

250

200

8
\

RSM predicted preheat temperature (Degree
0

0 50 100 150

Observed preheat temperature (Degree C)

y=0.99ax+ 09771
R? = 0.994

Reliability plot of observed versus
predicted preheat temperature

(PT)

250

Figure 2: Reliability plot of observed versus predicted preheat temperature (PT)
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The high coefficient of determination (R® = 0.9940) as observed in Figure 2 was used to established the
suitability of response surface methodology in minimizing preheat temperature (PT). Finally, numerical
optimization was performed to ascertain the desirability of the overall model. The optimization objective was to
minimize preheat temperature (PT). The relative importance was set at the optimum value of 5.0 and the lower
and upper boundary conditions were set at 1.0 and 0.1 for minimization. Lower boundary of 1.0 constrains the
optimization tool to minimize the response variable. The final solution of numerical optimization is presented in
Table 9

Table 9: Optimal solutions of numerical optimization

File Edt View DsplayOptions DesgnTook Hep
Disld [2el 82
jﬁmfﬁmm A Oteis | f soiee 7] Grame |
-] Desin (Ackua] o
-8 Sumary ol 2| 3| |s|e|v]s|s|m|u|n|n|u|s|s|m]|e|e]jxa]|n]|z]
L CephCoumes |
e ) | l I l | I l I l l
5] Arayss || Soletioas
L F ey L tamber Current Vokage Wieiding speec B q HN R BT Desirabdity
Lh ez || 2 12090 nss am 158503 150.63% =
—: CR {Anayzed) i 3 720.00 Fa k- 53 203885 169781 150755 0
e i s 2010 245 s MM A7ISm 53 150905 as6¢
-4 Dptmzstos ‘_4 5 =010 Py 53¢ 2142 184332 21757 50375 084
:;E: Z‘x | ] 5 2010 78 1 WS 16T 22931 1507 (e
L 7 227 P 53 00790 1.71708 24953 150854 0%
= B 2872 At 5 200334 17434 28052 151153 0563
‘_‘ 9 3010 27 53¢ 193,042 120457 70573 ST 0953
w 10 20.00 2215 43 54 1248M 72731 153 358 088
|| " 2820 24 8 193.435 B1S3 130105 LT3 152134 0.5
- 12 30.90 4 4% 3025 7484z 128554 T 157624 0953
‘_ 1 0.i0 2383 2 193058 33012 127828 707123 124014 0%
L i 7 2 pi [ESRMSS 1.33131 125047 705132 134082 095
|| 1 7000 2385 23 193057 2977 707655 133538 0%s
- 15 70,40 i) Z 13303 1.32621 70.5074 133835 0558
‘_‘ 17 i 3% Z 183035 243 T1.18% 133713 0.8
] 18 7085 2% 2 193.455 3% 128837 7065328 134263 095
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- pi 70,40 pra 20z 192038 124134 125622 838452 135224 095
| ] bl 7050 25 2 193008 { 24857 1304 9222 355 0555
From the results of Table 9, it was design expert with a desirability value of 96.40%.
observed that a current of 190.00amp, voltage of To study the effects of combine input variables on
21.95volts and welding speed of 5.00mm/s will cooling rate (CR), 3D surface plots was generated
produce a weld material with cooling rate (CR); of and presented in Figure 3

72.0727°C/s. The optimal solution was selected by
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Figure 3: Effect of current and voltage on preheat temperature (PT)

The 3D surface plots presented in Figures
3 shows the relationship between the input
variables (current and voltage) and the response
variable (preheat temperature (PT)). It is a 3
dimensional surface plot which was employed to
give a clearer concept of the response surface.
Although not as useful as the contour plot for
establishing responses values and coordinates, the
view can provide a clearer picture of the
interactions between the input and the response
variables. The convex nature of Figure 3 implies
that the selected input variables (current and

voltage) has a critical influence on the response
(preheat temperature). In which case an increase in
the input variables will result to a corresponding
increase in the response variable.

To apply ANN for the prediction of
preheat temperature, two important factors were
considered and they include; selection of the most
accurate training algorithm and determination of
the exact number of hidden neurons. Table 10
shows the different training algorithm that were
tested and their performance.

Table 10: Selection of optimum training algorithm for ANN

S/No Training Algorithm

(Learning Rule)

Training
MSE

Cross
Validation MSE

R-Square
()

1 Gradient information | 0.05489

(Step)

0.04905 0.74

2 Gradient and weight | 0.05339

change (Momentum)

0.08097 0.78

3 Gradient and rate of | 0.06894
change  of  gradient

(Quick prop)

0.04467 0.68

4 Adaptive step sizes for | 0.07602
gradient plus momentum

(Delta Bar Delta)

0.00335 0.82

5 Second order method for | 0.03367
gradient (Conjugate

gradient)

0.06703 0.79

6 Improved second order | 0.00028*
method for gradient

(Levenberg Marquardt)

0.00012* 0.98*
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Based on the result of Table 10, improved
second order method of gradient also known as
Levenberg Marquardt Back Propagation training
algorithm (LMBPTA) was selected as the best
since it has the highest coefficient of determination
(R?) and the lowest mean square error of regression
(MSE). To determine the exact numbers of hidden

neuron, different numbers of hidden neurons were
tested to create a trained network using Levenberg
Marquardt Back Propagation training algorithm.
The number of hidden neuron corresponding to the
lowest MSE and the highest R? as presented in
Table 11 was selected to design the network
architecture.

Table 11: Selection of optimum number of hidden neurons for ANN

S/INo | Number of Hidden | Training MSE Cross  Validation | R-Square
Neurons MSE (R%

1 2 0.0345 0.00453 0.75

2 3 0.0269 0.03367 0.67

3 5 0.0306 0.04051 0.88

4 8 0.0178 0.02241 0.71

5 10 0.0009 0.00033 0.97

Based on the results of Tables 10 and 11,
Levenberg Marquardt Back Propagation training
algorithm having 10 hidden neurons in the input
layer and output layer was used to train a network
of 3 input processing elements, namely; current,

voltage and welding speed and one response
variable (preheat temperature)

The network training diagram generated for the
prediction of preheats temperature (PT) using back
propagation neural network is presented in Figure
4.

L@ | Neural Network Tra'ml.r}s P;Edorman:o (‘plolpérforrﬁ), Epoéh 19, Validation stop. liLM

File Eclit View Insert Tools Desktop
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Window Help ™~
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\

Tast

—— Traln
Validation
Beost

0

Mean Squared Error (mse)

8] 2 4 6 a8

19 Epochs

i i i " L
10 12 14 16 18

Figure 4: Performance curve of trained network for predicting preheat temperature

From the performance plot of Figure 4, no
evidence of over fitting was observed. In addition
similar trend was observed in the behaviour of the
training, validation and testing curve which is
expected since the raw data were normalized before
use. Lower mean square error is a fundamental
criteria used to determine the training accuracy of a
network. An error value of 2.1308e-05 at epoch 13

is an evidence of a network with strong capacity to
predict preheats temperature.

The regression plot which shows the correlation
between the input variables (current, voltage and
welding speed) and the target variable preheat
temperature (PT) coupled with the progress of
training, validation and testing is presented in
Figure 5
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Figure 5: Regression plot showing the progress of training, validation and testing for minimizing preheat
temperature (PT)

Based on the computed values of the
correlation coefficient (R) as observed in Figure 5,
it was concluded that the network has been
adequately trained and can be employed to predict
preheat temperature (PT). To test the reliability of
the trained network, the network was thereafter
employed to predict its own value of preheat

temperature (PT) using the same set of input
parameters (current, voltage and welding speed)
generated from the central composite design.
Based on the observed and the predicted values, a
regression plot of outputs was thereafter generated
and presented in Figure 6
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Figure 6: Regression plot of observed versus predicted preheat temperature

Coefficient of determination (r°) values of 0.9978
as observed in Figure 6 was employed to draw a
conclusion that the the trained network can be used
to predict preheat temperature (PT) beyond the
scope of experimentation.

V. CONCLUSION

In this study, optimization and prediction
of preheat temperature using response surface
methodoloy (RSM) and artificial neural network
have been implemented successfully. The study
will not only provide additional information to the
already existing literatures and optimization and
prediction of welding process, it will also form the
bases for future research in related field of study. It
is interesting to note that determining the optimum
conditions for any welding process is completely
beyond the scope of the traditional methods of
experimentation hence, the need to optimize all the
controlling variables collectively using statistical
design of experiment (DOE) which allows a large
number of factors to be screened simultaneously. In
this study, response surface methodology (RSM)
has been successfully applied to optimize selected
welding variables, namely; current, voltage and
welding speed in order to minimize the preheat
temperature and eliminate crack formation. More
also, Artificial Neural Network (ANN) is gradually
gaining general acceptability as one of the most
versatile predictive tool of the 21st century. Its
application and usefulness especially in the process
industry cannot be over emphasized. In this study,
the network has successfully been utilized to
predict weld variables effectively.
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